Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Infect Dis ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2297119

ABSTRACT

BACKGROUND: This study compared admission incidence risk across waves, and the risk of mortality in the Omicron BA.4/BA.5 wave, to the Omicron BA.1/BA.2 and Delta waves. METHODS: Data from South Africa's national hospital surveillance system, SARS-CoV-2 case linelist and Electronic Vaccine Data System were linked and analysed. Wave periods were defined when the country passed a weekly incidence of 30 cases/100,000 people. In-hospital case fatality ratios (CFR) in the Delta, Omicron BA.1/BA.2 and Omicron BA.4/BA.5 wave periods were compared by post-imputation random effect multivariable logistic regression models. RESULTS: The CFR was 25.9% (N = 37,538/144,778), 10.9% (N = 6,123/56,384) and 8.2% (N = 1,212/14,879) in the Delta, Omicron BA.1/BA.2, and Omicron BA.4/BA.5 waves respectively. After adjusting for age, sex, race, comorbidities, health sector and province, compared to the Omicron BA.4/BA.5 wave, patients had higher risk of mortality in the Omicron BA.1/BA.2 wave (adjusted odds ratio [aOR] 1.3; 95% confidence interval [CI] 1.2-1.4) and Delta (aOR 3.0; 95% CI 2.8-3.2) wave. Being partially vaccinated (aOR 0.9, CI 0.9-0.9), fully vaccinated (aOR 0.6, CI 0.6-0.7) and boosted (aOR 0.4, CI 0.4-0.5); and prior laboratory-confirmed infection (aOR 0.4, CI 0.3-0.4) were associated with reduced risks of mortality. CONCLUSION: Overall, admission incidence risk and in-hospital mortality, which had increased progressively in South Africa's first three waves, decreased in the fourth Omicron BA.1/BA.2 wave and declined even further in the fifth Omicron BA.4/BA.5 wave. Mortality risk was lower in those with natural infection and vaccination, declining further as the number of vaccine doses increased.

2.
Lancet Glob Health ; 10(7): e961-e969, 2022 07.
Article in English | MEDLINE | ID: covidwho-1852287

ABSTRACT

BACKGROUND: Up to the end of January, 2022, South Africa has had four recognisable COVID-19 pandemic waves, each predominantly dominated by one variant of concern: the ancestral strain with an Asp614Gly mutation during the first wave, the beta variant (B.1.351) during the second wave, the delta variant (B.1.617.2) during the third wave, and lastly, the omicron variant (B.1.1.529) during the fourth wave. We aimed to assess the clinical disease severity of patients admitted to hospital with SARS-CoV-2 infection during the omicron wave and compare the findings with those of the preceding three pandemic waves in South Africa. METHODS: We defined the start and end of each pandemic wave as the crossing of the threshold of weekly incidence of 30 laboratory-confirmed SARS-CoV-2 cases per 100 000 population. Hospital admission data were collected through an active national COVID-19-specific surveillance programme. We compared disease severity across waves by post-imputation random effect multivariable logistic regression models. Severe disease was defined as one or more of the following: acute respiratory distress, receipt of supplemental oxygen or mechanical ventilation, admission to intensive care, or death. FINDINGS: We analysed 335 219 laboratory-confirmed SARS-CoV-2 hospital admissions with a known outcome, constituting 10·4% of 3 216 179 cases recorded during the four waves. During the omicron wave, 52 038 (8·3%) of 629 617 cases were admitted to hospital, compared with 71 411 (12·9%) of 553 530 in the Asp614Gly wave, 91 843 (12·6%) of 726 772 in the beta wave, and 131 083 (10·0%) of 1 306 260 in the delta wave (p<0·0001). During the omicron wave, 15 421 (33·6%) of 45 927 patients admitted to hospital had severe disease, compared with 36 837 (52·3%) of 70 424 in the Asp614Gly wave, 57 247 (63·4%) of 90 310 in the beta wave, and 81 040 (63·0%) of 128 558 in the delta wave (p<0·0001). The in-hospital case-fatality ratio during the omicron wave was 10·7%, compared with 21·5% during the Asp614Gly wave, 28·8% during the beta wave, and 26·4% during the delta wave (p<0·0001). Compared with those admitted to hospital during the omicron wave, patients admitted during the other three waves had more severe clinical presentations (adjusted odds ratio 2·07 [95% CI 2·01-2·13] in the Asp614Gly wave, 3·59 [3·49-3·70] in the beta wave, and 3·47 [3·38-3·57] in the delta wave). INTERPRETATION: The trend of increasing cases and admissions across South Africa's first three waves shifted in the omicron wave, with a higher and quicker peak but fewer patients admitted to hospital, less clinically severe illness, and a lower case-fatality ratio compared with the preceding three waves. Omicron marked a change in the SARS-CoV-2 epidemic curve, clinical profile, and deaths in South Africa. Extrapolations to other populations should factor in differing vaccination and previous infection levels. FUNDING: National Institute for Communicable Diseases.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/epidemiology , Hospitals , Humans , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2 , South Africa/epidemiology
3.
Int J Infect Dis ; 118: 150-154, 2022 May.
Article in English | MEDLINE | ID: covidwho-1838855

ABSTRACT

BACKGROUND: At present, it is unclear whether the extent of reduced risk of severe disease seen with SARS-Cov-2 Omicron variant infection is caused by a decrease in variant virulence or by higher levels of population immunity. METHODS: RdRp target delay (RTD) in the Seegene AllplexTM 2019-nCoV PCR assay is a proxy marker for the Delta variant. The absence of this proxy marker in the transition period was used to identify suspected Omicron infections. Cox regression was performed for the outcome of hospital admission in those who tested positive for SARS-CoV-2 on the Seegene AllplexTM assay from November 1 to December 14, 2021 in the Western Cape Province, South Africa, in the public sector. Adjustments were made for vaccination status and prior diagnosis of infection. RESULTS: A total of 150 cases with RTD and 1486 cases without RTD were included. Cases without RTD had a lower hazard of admission (adjusted hazard ratio [aHR], 0.56; 95% confidence interval [CI], 0.34-0.91). Complete vaccination was protective against admission, with an aHR of 0.45 (95% CI, 0.26-0.77). CONCLUSION: Omicron has resulted in a lower risk of hospital admission compared with contemporaneous Delta infection, when using the proxy marker of RTD. Under-ascertainment of reinfections with an immune escape variant remains a challenge to accurately assessing variant virulence.


Subject(s)
COVID-19 , Hepatitis D , COVID-19/diagnosis , Humans , Polymerase Chain Reaction , RNA-Dependent RNA Polymerase , SARS-CoV-2/genetics , South Africa/epidemiology , Survival Analysis
4.
Trop Med Int Health ; 27(6): 564-573, 2022 06.
Article in English | MEDLINE | ID: covidwho-1784751

ABSTRACT

OBJECTIVES: The objective was to compare COVID-19 outcomes in the Omicron-driven fourth wave with prior waves in the Western Cape, assess the contribution of undiagnosed prior infection to differences in outcomes in a context of high seroprevalence due to prior infection and determine whether protection against severe disease conferred by prior infection and/or vaccination was maintained. METHODS: In this cohort study, we included public sector patients aged ≥20 years with a laboratory-confirmed COVID-19 diagnosis between 14 November and 11 December 2021 (wave four) and equivalent prior wave periods. We compared the risk between waves of the following outcomes using Cox regression: death, severe hospitalisation or death and any hospitalisation or death (all ≤14 days after diagnosis) adjusted for age, sex, comorbidities, geography, vaccination and prior infection. RESULTS: We included 5144 patients from wave four and 11,609 from prior waves. The risk of all outcomes was lower in wave four compared to the Delta-driven wave three (adjusted hazard ratio (aHR) [95% confidence interval (CI)] for death 0.27 [0.19; 0.38]. Risk reduction was lower when adjusting for vaccination and prior diagnosed infection (aHR: 0.41, 95% CI: 0.29; 0.59) and reduced further when accounting for unascertained prior infections (aHR: 0.72). Vaccine protection was maintained in wave four (aHR for outcome of death: 0.24; 95% CI: 0.10; 0.58). CONCLUSIONS: In the Omicron-driven wave, severe COVID-19 outcomes were reduced mostly due to protection conferred by prior infection and/or vaccination, but intrinsically reduced virulence may account for a modest reduction in risk of severe hospitalisation or death compared to the Delta-driven wave.


Subject(s)
COVID-19 , Clinical Laboratory Techniques , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Testing , COVID-19 Vaccines/administration & dosage , Cohort Studies , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , South Africa/epidemiology , Young Adult
5.
Lancet ; 399(10330): 1141-1153, 2022 03 19.
Article in English | MEDLINE | ID: covidwho-1747473

ABSTRACT

BACKGROUND: We aimed to assess the effectiveness of a single dose of the Ad26.COV2.S vaccine (Johnson & Johnson) in health-care workers in South Africa during two waves of the South African COVID-19 epidemic. METHODS: In the single-arm, open-label, phase 3B implementation Sisonke study, health-care workers aged 18 years and older were invited for vaccination at one of 122 vaccination sites nationally. Participants received a single dose of 5 × 1010 viral particles of the Ad26.COV2.S vaccine. Vaccinated participants were linked with their person-level data from one of two national medical insurance schemes (scheme A and scheme B) and matched for COVID-19 risk with an unvaccinated member of the general population. The primary outcome was vaccine effectiveness against severe COVID-19, defined as COVID-19-related admission to hospital, hospitalisation requiring critical or intensive care, or death, in health-care workers compared with the general population, ascertained 28 days or more after vaccination or matching, up to data cutoff. This study is registered with the South African National Clinical Trial Registry, DOH-27-022021-6844, ClinicalTrials.gov, NCT04838795, and the Pan African Clinical Trials Registry, PACTR202102855526180, and is closed to accrual. FINDINGS: Between Feb 17 and May 17, 2021, 477 102 health-care workers were enrolled and vaccinated, of whom 357 401 (74·9%) were female and 119 701 (25·1%) were male, with a median age of 42·0 years (33·0-51·0). 215 813 vaccinated individuals were matched with 215 813 unvaccinated individuals. As of data cutoff (July 17, 2021), vaccine effectiveness derived from the total matched cohort was 83% (95% CI 75-89) to prevent COVID-19-related deaths, 75% (69-82) to prevent COVID-19-related hospital admissions requiring critical or intensive care, and 67% (62-71) to prevent COVID-19-related hospitalisations. The vaccine effectiveness for all three outcomes were consistent across scheme A and scheme B. The vaccine effectiveness was maintained in older health-care workers and those with comorbidities including HIV infection. During the course of the study, the beta (B.1.351) and then the delta (B.1.617.2) SARS-CoV-2 variants of concerns were dominant, and vaccine effectiveness remained consistent (for scheme A plus B vaccine effectiveness against COVID-19-related hospital admission during beta wave was 62% [95% CI 42-76] and during delta wave was 67% [62-71], and vaccine effectiveness against COVID-19-related death during beta wave was 86% [57-100] and during delta wave was 82% [74-89]). INTERPRETATION: The single-dose Ad26.COV2.S vaccine shows effectiveness against severe COVID-19 disease and COVID-19-related death after vaccination, and against both beta and delta variants, providing real-world evidence for its use globally. FUNDING: National Treasury of South Africa, the National Department of Health, Solidarity Response Fund NPC, The Michael & Susan Dell Foundation, The Elma Vaccines and Immunization Foundation, and the Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 , HIV Infections , Vaccines , Ad26COVS1 , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Female , Humans , Male , SARS-CoV-2 , South Africa/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL